
Two pieces of research were also released with this announcement. The first, a survey of 500 CIOs in 11 countries on three continents and across 25 industries conducted in conjunction with Oxford Economics, revealed:
- Nearly 90% of CIOs are using or plan to use ML
- The number of CIOs that will make at least some investment in ML will almost double (from 35% in 2017 to 63% in 2020)
- More than half of CIOs (52%) say they are already automating more complex decisions
- In terms of the value expected from decision automation over the next three years, 83% cited speed of decision, 87% said accuracy of decisions, and 69% believe it will drive top-line growth
So what does it all mean for customer service? For one thing, that ML and AI are becoming more mainstream and easier to adopt. For another, companies that fail to take advantage of them will not only continue to struggle to keep up with customer service work, but they might also be at a competitive disadvantage. If you have not yet made the move to ML and AI in customer service–or elsewhere in your business–allow me to summarize the advice found in the research cited. (But don’t let that be an excuse to not review them when you have a chance.)
Identify Automation Opportunities
The Accenture report demonstrates the business value of ML and AI is there, but today only in certain circumstances. Unstructured, redundant, and mundane tasks are the works patterns that typically benefit from automation. The increases in productivity and time savings then allow humans to focus on higher value work.Agent Intelligence, for example, focuses on the categorization, prioritization, and assignment of customer cases–a high-volume, arduous activity that can be slow and fraught with errors. Not only can Agent Intelligence improve the speed and accuracy, but it can have a positive impact on customer satisfaction by preventing such delays to resolution.
Start With And Maintain High-Quality Data
Your data is the basis upon which your ML is founded, and serves as the foundational knowledge AI will use to perform its duties. That being the case, what is capable of automation will be highly dependent upon your data quality. Companies must evaluate if their processes have been digitized to the extent they can capture the correct data to build and improve ML algorithms. It is also worth investigating if there is data obtainable from outside your company that could further enhance the quality of your ML efforts.Measure And Report
It is critical to continuously measure outcomes to reinforce the value ML and AI brings to your organization. The same metrics for volume, productivity, and efficiency are great initially to compare ML and AI to human efforts, but new metrics are also necessary.A capability like Agent Intelligence that employs both ML and AI means measuring both sides of that coin: the percentage of ML recommendations accepted as correct and put into productive use as well as the speed, efficiency, and accuracy of the AI component. This will aid in continuous improvement efforts.